Molekulare Basis von Organversagen und Regeneration

Organversagen ist eine häufige Folge von Trauma-induziertem Schock oder durch Sepsis hervorgerufenen Entzündungen. Auf der Intensivstation ist der Ausfall lebenswichtiger Organe eine der häufigsten Todesursachen. Organversagen entsteht beispielsweise durch Schädigungen des Gewebes nach Entzündungsreaktionen oder durch eine unzureichende Sauerstoffversorgung, die in Folge von Durchblutungsstörungen und Schock entstehen kann.

Unter der Leitung von Andrey Kozlov werden die zugrundeliegenden molekularen Mechanismen von Trauma-, Schock- und entzündungsinduziertem Organversagen erforscht. Der Fokus liegt dabei auf der Fehlfunktion von verschiedenen subzellulären Strukturen, wie Mitochondrien, dem endoplasmatischen Retikulum oder dem Kern. Außerdem werden pathologische intrazelluläre Signalkaskaden untersucht, die beispielsweise von Gasen als Botenstoffe (Stickstoffmonoxide, Karbonmonoxide, Wasserstoffsulfid) oder von intrazellulären Redoxreaktionen abhängig sind. Weitere Forschung umfasst:

  • Auswirkungen von mitochondrialen reaktiven Sauerstoff Spezies (ROS) auf durch systemische Entzündungsreaktionen (SIRS) oder Sepsis vermitteltes Organversagen
  • Stickstoffmonoxid-vermittelte Mechanismen von neuronaler Dysfunktion induziert durch Schädel-Hirn Trauma
  • Die Rolle von Stresseinwirkung auf das endoplasmatische Retikulum bei der Entwicklung von Schock- oder Sepsis-induziertem Organversagen
  • Pathophysiologische Rolle von freiem redoxaktivem Eisen in hypoxischen Geweben bei der Entwicklung von Organversagen
  • Pathophysiologische Rolle von STAT- und AIF-vermittelten Prozessen im Laufe der Entwicklung von Entzündungsreaktionen und Krebs

Ziel ist dabei, neue diagnostische Methoden zu entwickeln, die die Behandlung von Organversagen ermöglichen. Ein Fokus liegt zum Beispiel auf der therapeutischen Relevanz von reaktiven Sauerstoff- und Stickstoff-Spezies (RONS) in Organen oder auf Auswirkungen der Aktivierung und Hemmung von Hämoxygenase und NO-Synthase.

Ausgewählte Publikationen

Weidinger A, Birgisdóttir L, Schäffer J, Meszaros AT, Zavadskis S, Müllebner A, Hecker M, Duvigneau JC, Sommer N, Kozlov AV (2022) Systemic Effects of mitoTEMPO upon Lipopolysaccharide Challenge Are Due to Its Antioxidant Part, While Local Effects in the Lung Are Due to Triphenylphosphonium. Antioxidants. 2022 Feb 6;11 (2): 323.
(free PDF)

Hosmann A, Milivojev N, Dumitrescu S, Reinprecht A, Weidinger A, Kozlov AV (2021) Cerebral nitric oxide and mitochondrial function in patients suffering aneurysmal subarachnoid hemorrhage-a translational approach. Acta Neurochir (Wien) 2021 Jan;163(1):139-149. 
(free PDF)

Zavadskis S, Weidinger A, Hanetseder D, Banerjee A, Schneider C, Wolbank S, Marolt Presen D, Kozlov AV (2020) Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types. Pharmaceutics 2020 Dec 23;13(1):10
(free PDF)

Luís A, Hackl M, Jafarmadar M, Keibl C, Jilge JM, Grillari J, Bahrami S, Kozlov AV (2020) Circulating miRNAs Associated With ER Stress and Organ Damage in a Preclinical Model of Trauma Hemorrhagic Shock. Front Med (Lausanne) 2020 Sep 24;7:568096.
(free PDF)

Herminghaus A, Papenbrock H, Eberhardt R, Vollmer C, Truse R, Schulz J, Bauer I, Weidinger A, Kozlov AV, Stiban J, Picker O. (2019). Time-related changes in hepatic and colonic mitochondrial oxygen consumption after abdominal infection in rats. Intensive Care Med Exp. 2019 Jan 8;7(1):4.
(free PDF)

Cronin SJF, Seehus C, Weidinger A, Talbot S, Reissig S, Seifert M, Pierson Y, McNeill E, Longhi MS, Turnes BL, Kreslavsky T, Kogler M, Hoffmann D, Ticevic M, da Luz Scheffer D, Tortola L, Cikes D, Jais A, Rangachari M, Rao S, Paolino M, Novatchkova M, Aichinger M, Barrett L, Latremoliere A, Wirnsberger G, Lametschwandtner G, Busslinger M, Zicha S, Latini A, Robson SC, Waisman A, Andrews N, Costigan M, Channon KM, Weiss G, Kozlov AV, Tebbe M, Johnsson K, Woolf CJ, Penninger JM (2018). The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature. Nov;563(7732):564-568.
(free PDF)

Mkrtchyan GV, Üçal M, Müllebner A, Dumitrescu S, Kames M, Moldzio R, Molcanyi M, Schaefer S, Weidinger A, Schaefer U, Hescheler J, Duvigneau JC, Redl H, Bunik VI, Kozlov AV (2018). Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex. Biochim Biophys Acta Bioenerg., Sep;1859(9):925-931

Kozlov AV, Lancaster JR Jr, Meszaros AT, Weidinger A (2017). Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol,13:170-181
(free PDF)

Kozlov AV, Bahrami S, Redl H & Szabo C (2017). Alterations in nitric oxide homeostasis during traumatic brain injury. Biochim Biophys Acta, S0925-4439(17):30004-2.

Üçal M, Kraitsy K, Weidinger A, Paier-Pourani J, Patz S, Fink B, Molcanyi M & Schäfer U (2016). Comprehensive Profiling of Modulation of Nitric Oxide Levels and Mitochondrial Activity in the Injured Brain: An Experimental Study Based on the Fluid Percussion Injury Model in Rats. J Neurotrauma, 34(2):475-486.

Weidinger A, Müllebner A, Paier-Pourani J, Banerjee A, Miller I, Lauterböck L, Duvigneau JC, Skulachev VP, Redl H & Kozlov AV (2015). Vicious inducible nitric oxide synthase-mitochondrial reactive oxygen species cycle accelerates inflammatory response and causes liver injury in rats. Antioxid Redox Signal, 22(7):572-586.

Dungel P, Perlinger M, Weidinger A, Redl H & Kozlov AV (2015). The cytoprotective effect of nitrite is based on the formation of dinitrosyl iron complexes. Free Radical Biology and Medicine, 89:300-310.

Weidinger A & Kozlov AV (2015). Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules, 5(2):472-484.
(free PDF)

Jais A, Einwallner E, Sharif O, Gossens K, Lu TT, Soyal SM, Medgyesi D, Neureiter D, Paier-Pourani J, Dalgaard K, Duvigneau JC, Lindroos-Christensen J, Zapf TC, Amann S, Saluzzo S, Jantscher F, Stiedl P, Todoric J, Martins R, Oberkofler H, Müller S, Hauser-Kronberger C, Kenner L, Casanova E, Sutterlüty-Fall H, Bilban M, Miller K, Kozlov AV, Krempler F, Knapp S, Lumeng CN, Patsch W, Wagner O, Pospisilik JA & Esterbauer H (2014). Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell, 158(1):25-40.
(free PDF)

Friedbichler K, Themanns M, Mueller KM, Schlederer M, Kornfeld JW, Terracciano LM, Kozlov AV, Haindl S, Kenner L, Kolbe T, Mueller M, Snibson KJ, Heim MH & Moriggl R (2012). Growth‐hormone–induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer. Hepatology, 55(3):941-952.

Kozlov AV1, Bahrami S, Calzia E, Dungel P, Gille L, Kuznetsov A & Troppmair J (2011). Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure? Ann Intensive Care, 1(1):41.
(free PDF)

Kuznetsov AV, Kehrer I, Kozlov AV, Haller M, Redl H, Hermann M, Grimm M & Troppmair J (2011). Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem, 400(8):2383-2390.

Duvigneau JC, Kozlov AV, Zifko C, Postl A, Hartl RT, Miller I, Gille L, Staniek K, Moldzio R, Gregor W, Haindl S, Behling T, Redl & Bahrami S (2010). Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock. Shock, 33(3):289-298.

Kozlov AV, Duvigneau JC, Hyatt TC, Raju R, Behling T, Hartl RT, Staniek K, Miller I, Gregor W, Redl H & Chaudry IH (2010). Effect of estrogen on mitochondrial function and intracellular stress markers in rat liver and kidney following trauma-hemorrhagic shock and prolonged hypotension. Molecular Medicine, 16(7-8):254-261.
(free PDF)

Kozlov AV, Duvigneau JC, Miller I, Nürnberger S, Gesslbauer B, Kungl A, Ohlinger W, Hartl RT, Gille L, Staniek K, Gregor W, Haindl S & Redl H (2009). Endotoxin causes functional endoplasmic reticulum failure, possibly mediated by mitochondria. Biochim Biophys Acta, 1792(6):521-530.
(free PDF)

Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR Jr, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, Richter-Addo GB, Schechter A, Shiva S, Tsuchiya K, van Faassen EE, Webb AJ, Zuckerbraun BS, Zweier JL & Weitzberg E (2009). Nitrate and nitrite in biology, nutrition and therapeutics. Nature chemical biology, 5(12):865-869.
(free PDF)

Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD, Ebersberger I, Nakashima T, Sarao R, Neely G, Esterbauer H, Kozlov A, Kahn CR, Kroemer G, Rustin P, Burcelin R & Penninger JM (2007). Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell, 131(3):476-491.
(free PDF)

Kozlov AV, Staniek K, Haindl S, Piskernik C, Ohlinger W, Gille L, Nohl H, Bahrami S & Redl H (2006). Different effects of endotoxic shock on the respiratory function of liver and heart mitochondria in rats. American Journal of Physiology-Gastrointestinal and Liver Physiology 290 (3). Am J Physiol Gastrointest Liver Physiol, 290(3):G543-549.

Kozlov AV, Costantino G, Sobhian B, Szalay L, Umar F, Nohl H, Bahrami S & Redl H (2005). Mechanisms of vasodilatation induced by nitrite instillation in intestinal lumen: possible role of hemoglobin. Antioxid Redox Signal, 7(3-4):515-21.